1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330
//! # `mnemos-alloc` Allocation Nodes
//!
//! These types represent the "behind the scenes" underlying types necessary
//! to safely enable the behaviors of the async allocation layer.
//!
//! These types are used by the `heap` module when allocating or freeing
//! an element, and are the "inner" types used by the `containers` module
//! to provide user-accessible types.
//!
//! This module has VERY PARTICULAR safety guarantees and concerns, and as
//! such these abstractions are not made crate-public, and kept private
//! within this module as much as is reasonably possible.
use cordyceps::{mpsc_queue::Links, Linked};
use core::mem::{ManuallyDrop, MaybeUninit};
use core::ptr::{addr_of, null};
use core::{alloc::Layout, ptr::NonNull};
use crate::heap::AHeap;
/// The heap allocation Node type
///
/// The Node type is never ACTUALLY created or used directly, but instead
/// is used as a "superset" of its children to ensure that the alignment
/// and necessary size are respected at the time of allocation. Allocation
/// is ALWAYS done as a `Node<T>`, meaning that conversions from an active
/// type to a Recycle type are always sound.
#[allow(dead_code)]
#[repr(C)]
pub(crate) union Node<T> {
// These are "active" types - e.g. they contain a live allocation
active: ManuallyDrop<Active<T>>,
active_arr: ManuallyDrop<ActiveArr<T>>,
active_unsized: ManuallyDrop<ActiveUnsized>,
// This is the "recycle" type - after the contents of the allocation
// has been retired, but the node still needs to be dropped via the
// actual underlying allocator
recycle: ManuallyDrop<Recycle>,
}
/// An Active node type
///
/// This type represents a live allocation of a single item, similar to a
/// `Box<T>` in liballoc.
///
/// It contains a pointer to the allocator, as well as storage for the item.
///
/// The contained data MUST be valid for the lifetime of the `Active<T>`.
#[repr(C)]
pub(crate) struct Active<T> {
heap: *const AHeap,
data: T,
}
/// An Active Array node type
///
/// This type represents a live allocation of a dynamic number of items,
/// similar to a `Box<[T]>` in liballoc. Note that this is NOT the same as
/// a `Vec<T>`, which can be dynamically resized. The underlying storage
/// here is always a fixed size, however that fixed size is chosen at
/// runtime, rather than at compile time.
///
/// It contains a pointer to the allocator, as well as storage for the items.
///
/// The contained data MUST be valid for the lifetime of the `ActiveArr<T>`.
///
/// The ActiveArr type itself actually contains storage for zero `T` items, however
/// it uses a `[T; 0]` to force the correct alignment of the `data` field. This
/// allows us to add `size_of::<T>() * N` bytes directly following the item, which
/// can be indexed starting at the address of the `data` field. This is done by
/// over-allocating space, and using the `ActiveArr::data` function to obtain
/// access to the array storage.
///
/// NOTE: Although the `data` field is not public (even within the crate),
/// EXTREME CARE must be taken NOT to access the data field through a reference
/// to an ActiveArr type. Creating a reference (rather than a pointer) to the
/// ActiveArr type itself serves as a "narrowing" of the provenance, which means
/// that accessing out of bound elements of `data` (which is ALL of them, as
/// data "officially" has an array length of zero) is undefined behavior.
///
/// The `ActiveArr::data` function handles this by using the `addr_of!` macro
/// to obtain the pointer of the underlying array storage, WITHOUT narrowing
/// the provenance of the outer "supersized" allocation.
#[repr(C)]
pub(crate) struct ActiveArr<T> {
heap: *const AHeap,
capacity: usize,
data: [T; 0],
}
#[repr(C)]
pub(crate) struct ActiveUnsized {
heap: *const AHeap,
}
/// A Recycle node type
///
/// Recycle is the "terminal state" of all allocations. After the actual
/// heap allocated data has been dropped, all active allocations become
/// a Recycle node. Allocations remain in this state until they have been
/// freed by the underlying allocator.
///
/// In the fast path, a Recycle node is dropped directly by the allocator.
/// In the slow path, the intrusive linked list header contained within
/// a Recycle node is used to "send" the allocation to a lock-free, intrusive
/// MpscQueue, where it will live until the allocator cleans up the pending
/// freelist items.
#[repr(C)]
pub(crate) struct Recycle {
// THIS MUST be the first item!
pub(crate) links: Links<Recycle>,
// This is the layout of the ENTIRE Node<T>, NOT just the payload.
pub(crate) node_layout: Layout,
}
impl<T> Active<T> {
/// Convert an `Active<T>` into a `Recycle`, and release it to be freed
///
/// This function does NOT handle dropping of the contained T, which
/// must be done BEFORE calling this function.
#[inline]
pub(crate) unsafe fn yeet(mut ptr: NonNull<Active<T>>) {
let heap = ptr.as_mut().heap;
let ptr: NonNull<Recycle> = ptr.cast();
ptr.as_ptr().write(Recycle {
links: Links::new(),
node_layout: Layout::new::<Node<T>>(),
});
(*heap).release_node(ptr);
}
#[inline(always)]
fn data_offset() -> isize {
let dummy: Active<MaybeUninit<T>> = Active {
heap: null(),
data: MaybeUninit::uninit(),
};
let data_ptr = addr_of!(dummy.data);
let dummy_ptr: *const Active<MaybeUninit<T>> = &dummy;
unsafe { dummy_ptr.cast::<u8>().offset_from(data_ptr.cast::<u8>()) }
}
pub(crate) unsafe fn from_leaked_ptr(data: NonNull<T>) -> NonNull<Active<T>> {
let ptr = data
.cast::<u8>()
.as_ptr()
.offset(Self::data_offset())
.cast::<Active<T>>();
NonNull::new_unchecked(ptr)
}
/// Set the heap pointer contained within the given `Active<T>`.
///
/// This should ONLY be used to initialize the `Active<T>` at time of allocation.
#[inline(always)]
pub(crate) unsafe fn write_heap(this: NonNull<Active<T>>, heap: *const AHeap) {
let ptr = this.as_ptr();
core::ptr::addr_of_mut!((*ptr).heap).write(heap);
}
/// Obtain a pointer to the underlying data storage
///
/// Although `Active<T>` does not have the same provenance challenges that the
/// `ActiveArr<T>` type has, we use the same `data` interface for reasons of
/// consistency. This also ensures that reordering or other modifications of
/// the underlying node type do not require changes elsewhere.
#[inline(always)]
pub(crate) unsafe fn data(this: NonNull<Active<T>>) -> NonNull<T> {
let ptr = this.as_ptr();
let dptr = core::ptr::addr_of_mut!((*ptr).data);
NonNull::new_unchecked(dptr)
}
}
impl<T> ActiveArr<T> {
/// Obtain a valid layout for an ActiveArr
///
/// As we can't directly create a `Layout` type for our `Node<T>`/`ActiveArr<T>`
/// because of the `!Sized` nature of `[T]`, we instead do manual layout
/// surgery here instead. This function takes the alignment necessary for
/// a `Node<T>`, but also increases the size to accomodate a `[T]` with
/// a size of the given `ct` parameter.
///
/// The given layout will always have a size >= the size of a `Node<T>`, even
/// if the `ActiveArr<T> + [T]` would be smaller than a `Node<T>`.
#[inline]
pub(crate) unsafe fn layout_for_arr(ct: usize) -> Layout {
let layout_node = Layout::new::<Node<T>>();
let layout_acta = Layout::new::<ActiveArr<T>>();
let arr_size = core::mem::size_of::<T>() * ct;
let size = layout_acta.size() + arr_size;
let size = core::cmp::max(layout_node.size(), size);
// We take the ALIGNMENT from the `Node`, which is a superset
// type, and the SIZE from either the (ActiveArr + Array) OR
// Node, whichever is larger
Layout::from_size_align_unchecked(size, layout_node.align())
}
/// Set the heap pointer contained within the given `ActiveArr<T>`.
///
/// This should ONLY be used to initialize the `ActiveArr<T>` at time of allocation.
#[inline(always)]
pub(crate) unsafe fn write_heap(this: NonNull<ActiveArr<T>>, heap: *const AHeap) {
let ptr = this.as_ptr();
core::ptr::addr_of_mut!((*ptr).heap).write(heap);
}
#[inline(always)]
pub(crate) unsafe fn write_capacity(this: NonNull<ActiveArr<T>>, capacity: usize) {
let ptr = this.as_ptr();
core::ptr::addr_of_mut!((*ptr).capacity).write(capacity);
}
/// Obtain a pointer to the start of the array storage, as well as the length of the array
///
/// NOTE: This VERY CAREFULLY avoids issues of provenance due to accessing "out of bounds"
/// of the `data` field of the `ActiveArr` type. See the docs of the ActiveArr type for
/// a more detailed discussion of these particularities.
#[inline(always)]
pub(crate) unsafe fn data(this: NonNull<ActiveArr<T>>) -> (NonNull<T>, usize) {
let size = this.as_ref().capacity;
let tptr = this.as_ptr();
let daddr = core::ptr::addr_of_mut!((*tptr).data);
let nn = NonNull::new_unchecked(daddr.cast::<T>());
(nn, size)
}
/// Convert an `Active<T>` into a Recycle, and release it to be freed
///
/// This function does NOT handle dropping of the contained `[T]`, which
/// must be done BEFORE calling this function.
#[inline]
pub(crate) unsafe fn yeet(mut ptr: NonNull<ActiveArr<T>>) {
let heap = ptr.as_mut().heap;
let capacity = ptr.as_mut().capacity;
let ptr: NonNull<Recycle> = ptr.cast();
let layout = Self::layout_for_arr(capacity);
ptr.as_ptr().write(Recycle {
links: Links::new(),
node_layout: layout,
});
(*heap).release_node(ptr);
}
}
impl ActiveUnsized {
/// Obtain a valid layout for an ActiveUnsized with an inner allocation of
/// the requested `Layout`.
#[inline]
pub(crate) fn layout(layout_inner: Layout) -> (Layout, usize) {
let layout_node = Layout::new::<Node<()>>();
let (mut layout, offset) = Layout::new::<*const AHeap>().extend(layout_inner).unwrap();
// round up to ensure we can fit a `Node`
if layout_node.size() > layout.size() {
layout = layout_node;
}
(layout, offset)
}
/// Set the heap pointer contained within the given `ActiveUnsized`.
///
/// This should ONLY be used to initialize the `ActiveUnsized` at time of allocation.
#[inline(always)]
pub(crate) unsafe fn write_heap(this: NonNull<Self>, heap: *const AHeap) {
let ptr = this.as_ptr();
core::ptr::addr_of_mut!((*ptr).heap).write(heap);
}
#[inline(always)]
pub(crate) unsafe fn from_raw(data: NonNull<()>, layout_inner: Layout) -> NonNull<Self> {
let (_layout, offset) = Self::layout(layout_inner);
let ptr = data.cast::<u8>().as_ptr().sub(offset).cast::<Self>();
NonNull::new_unchecked(ptr)
}
/// Convert an `ActiveUnsized` into a Recycle, and release it to be freed.
///
/// # Safety
///
/// The provided `Layout` *must* be the same as the `ActiveUnsized`'s
/// original allocated `Layout`!
#[inline]
pub(crate) unsafe fn yeet(mut ptr: NonNull<Self>, layout: Layout) {
let heap = ptr.as_mut().heap;
let ptr: NonNull<Recycle> = ptr.cast();
let (layout, _) = Self::layout(layout);
ptr.as_ptr().write(Recycle {
links: Links::new(),
node_layout: layout,
});
(*heap).release_node(ptr);
}
}
impl<T> Drop for Node<T> {
fn drop(&mut self) {
panic!("Nodes should never be directly dropped!");
}
}
/// A handle that is used by the mpsc freelist to hold a linked list of Recycle nodes
pub(crate) struct NodeRef {
pub(crate) node: NonNull<Recycle>,
}
unsafe impl Linked<Links<Recycle>> for Recycle {
type Handle = NodeRef;
fn into_ptr(r: Self::Handle) -> NonNull<Self> {
r.node
}
unsafe fn from_ptr(ptr: NonNull<Self>) -> Self::Handle {
NodeRef { node: ptr }
}
unsafe fn links(ptr: NonNull<Self>) -> NonNull<Links<Recycle>> {
ptr.cast::<Links<Recycle>>()
}
}