1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505
///! Allocation types for the Anachro PC.
use core::{
alloc::Layout,
cell::UnsafeCell,
marker::PhantomData,
mem::MaybeUninit,
ptr::NonNull,
sync::atomic::{AtomicBool, AtomicU8, AtomicUsize, Ordering},
};
use crate::{
containers::{ArcInner, HeapArc, HeapArray, HeapBox, HeapFixedVec},
node::{Active, ActiveArr, ActiveUnsized, Node, NodeRef, Recycle},
};
use cordyceps::mpsc_queue::{Links, MpscQueue};
use linked_list_allocator::Heap;
use maitake::sync::WaitQueue;
/// An Anachro Heap item
pub struct AHeap {
freelist: MpscQueue<Recycle>,
state: AtomicU8,
heap: UnsafeCell<Heap>,
heap_wait: WaitQueue,
inhibit_alloc: AtomicBool,
any_frees: AtomicBool,
}
// SAFETY: Safety is checked through the `state` member, which uses
// atomic operations to ensure the data is initialized and exclusively
// accessed.
unsafe impl Sync for AHeap {}
unsafe impl Send for AHeap {}
impl AHeap {
/// The AHeap is initialized, and no `HeapGuard`s are active.
const INIT_IDLE: u8 = 1;
/// The AHeap is "locked", and cannot currently be retrieved. In MOST cases
/// this also means the heap is initialized, except for the brief period of
/// time while the heap is being initialized.
const BUSY_LOCKED: u8 = 2;
/// Construct a thread safe async allocator from a pool of memory.
///
/// Safety: The pool of memory MUST be valid for the 'static lifetime, e.g.
/// obtained by a leaked buffer, a linker section, or some other mechanism.
/// Additionally, we must semantically have exclusive access to this region
/// of memory: There must be no other live references, or pointers to this
/// region that are dereferenced after this call.
pub unsafe fn bootstrap(addr: *mut u8, size: usize) -> Result<(NonNull<Self>, HeapGuard), ()> {
// First, we go all bump-allocator to emplace ourselves within this region
let mut cursor = addr;
let end = (addr as usize).checked_add(size).ok_or(())?;
let mut used = 0;
let stub_ptr;
let aheap_ptr;
// We start with the stub node required for our mpsc queue.
{
let stub_layout = Layout::new::<Recycle>();
let stub_offset = cursor.align_offset(stub_layout.align());
let stub_size = stub_layout.size();
used += stub_offset;
used += stub_size;
if used > size {
return Err(());
}
cursor = cursor.wrapping_add(stub_offset);
stub_ptr = cursor.cast::<Recycle>();
stub_ptr.write(Recycle {
links: Links::new_stub(),
node_layout: stub_layout,
});
cursor = cursor.add(stub_size);
}
// Next we allocate ourselves
{
let aheap_layout = Layout::new::<Self>();
let aheap_offset = cursor.align_offset(aheap_layout.align());
let aheap_size = aheap_layout.size();
used += aheap_offset;
used += aheap_size;
if used > size {
return Err(());
}
cursor = cursor.wrapping_add(aheap_offset);
aheap_ptr = cursor.cast::<Self>();
// Increment the cursor, as we use it for the heap initialization
cursor = cursor.add(aheap_size);
let heap = Heap::new(cursor, end - (cursor as usize));
aheap_ptr.write(Self {
freelist: MpscQueue::new_with_static_stub(&*stub_ptr),
state: AtomicU8::new(Self::BUSY_LOCKED),
heap: UnsafeCell::new(heap),
heap_wait: WaitQueue::new(),
inhibit_alloc: AtomicBool::new(false),
any_frees: AtomicBool::new(false),
});
}
// Everything else is now our allocation space.
let aheap = NonNull::new_unchecked(aheap_ptr);
let aheap_ref: &'static AHeap = aheap.as_ref();
// Creating exclusive access to the inner heap is acceptable, as we
// have marked ourselves with "BUSY_LOCKED", acting as a mutex.
let guard = HeapGuard { aheap: aheap_ref };
// Well that went great, I think!
Ok((aheap, guard))
}
pub(crate) unsafe fn release_node(&'static self, node: NonNull<Recycle>) {
// Can we immediately lock the allocator, avoiding the free list?
if let Ok(mut guard) = self.lock() {
let layout: Layout = (*node.as_ptr()).node_layout;
guard.get_heap().deallocate(node.cast::<u8>(), layout);
return;
}
// Nope! Stick it in the free list
let node_ref = NodeRef { node };
self.freelist.enqueue(node_ref);
}
pub fn poll(&'static self) {
let mut hg = self.lock().unwrap();
// Clean any pending allocs
hg.clean_allocs();
// Did we perform any deallocations?
if self.any_frees.swap(false, Ordering::SeqCst) {
// Clear the inhibit flag
self.inhibit_alloc.store(false, Ordering::SeqCst);
// Wake any tasks waiting on alloc
self.heap_wait.wake_all();
}
}
pub fn lock(&'static self) -> Result<HeapGuard, u8> {
self.state.compare_exchange(
Self::INIT_IDLE,
Self::BUSY_LOCKED,
Ordering::SeqCst,
Ordering::SeqCst,
)?;
// SAFETY: We are already in the BUSY_LOCKED state, we have exclusive access.
Ok(HeapGuard { aheap: self })
}
pub async fn allocate<T>(&'static self, mut item: T) -> HeapBox<T> {
loop {
// Is the heap inhibited?
if !self.inhibit_alloc.load(Ordering::Acquire) {
// Can we get an exclusive heap handle?
if let Ok(mut hg) = self.lock() {
// Can we allocate our item?
match hg.alloc_box(item) {
Ok(hb) => {
// Yes! Return our allocated item
return hb;
}
Err(it) => {
// Nope, the allocation failed.
item = it;
}
}
}
// We weren't inhibited before, but something failed. Inhibit
// further allocations to prevent starving waiting allocations
self.inhibit_alloc.store(true, Ordering::Release);
}
// Didn't succeed, wait until we've done some de-allocations
self.heap_wait.wait().await.unwrap();
}
}
pub async fn allocate_arc<T>(&'static self, mut item: T) -> HeapArc<T> {
loop {
// Is the heap inhibited?
if !self.inhibit_alloc.load(Ordering::Acquire) {
// Can we get an exclusive heap handle?
if let Ok(mut hg) = self.lock() {
// Can we allocate our item?
match hg.alloc_arc(item) {
Ok(hb) => {
// Yes! Return our allocated item
return hb;
}
Err(it) => {
// Nope, the allocation failed.
item = it;
}
}
}
// We weren't inhibited before, but something failed. Inhibit
// further allocations to prevent starving waiting allocations
self.inhibit_alloc.store(true, Ordering::Release);
}
// Didn't succeed, wait until we've done some de-allocations
self.heap_wait.wait().await.unwrap();
}
}
pub async fn allocate_array_with<F, T>(&'static self, f: F, count: usize) -> HeapArray<T>
where
F: Fn() -> T,
{
loop {
// Is the heap inhibited?
if !self.inhibit_alloc.load(Ordering::Acquire) {
// Can we get an exclusive heap handle?
if let Ok(mut hg) = self.lock() {
// Can we allocate our item?
//
// NOTE: We borrow `f`, since `&Fn() -> T` still impls `Fn() -> T`, and allows
// us to potentially call it multiple times.
match hg.alloc_box_array_with(&f, count) {
Ok(hb) => {
// Yes! Return our allocated item
return hb;
}
Err(_) => {
// Nope, the allocation failed.
}
}
}
// We weren't inhibited before, but something failed. Inhibit
// further allocations to prevent starving waiting allocations
self.inhibit_alloc.store(true, Ordering::Release);
}
// Didn't succeed, wait until we've done some de-allocations
self.heap_wait.wait().await.unwrap();
}
}
pub async fn allocate_fixed_vec<T>(&'static self, capacity: usize) -> HeapFixedVec<T> {
loop {
// Is the heap inhibited?
if !self.inhibit_alloc.load(Ordering::Acquire) {
// Can we get an exclusive heap handle?
if let Ok(mut hg) = self.lock() {
match hg.alloc_fixed_vec(capacity) {
Ok(hb) => {
// Yes! Return our allocated item
return hb;
}
Err(_) => {
// Nope, the allocation failed.
}
}
}
// We weren't inhibited before, but something failed. Inhibit
// further allocations to prevent starving waiting allocations
self.inhibit_alloc.store(true, Ordering::Release);
}
// Didn't succeed, wait until we've done some de-allocations
self.heap_wait.wait().await.unwrap();
}
}
pub async fn allocate_raw(&'static self, layout: Layout) -> NonNull<()> {
loop {
// Is the heap inhibited?
if !self.inhibit_alloc.load(Ordering::Acquire) {
// Can we get an exclusive heap handle?
if let Ok(mut hg) = self.lock() {
match hg.alloc_raw(layout) {
Ok(hb) => {
// Yes! Return our allocated item
return hb;
}
Err(_) => {
// Nope, the allocation failed.
}
}
}
// We weren't inhibited before, but something failed. Inhibit
// further allocations to prevent starving waiting allocations
self.inhibit_alloc.store(true, Ordering::Release);
}
// Didn't succeed, wait until we've done some de-allocations
self.heap_wait.wait().await.unwrap();
}
}
}
/// Deallocate an unsized allocation with the provided `Layout`.
///
/// # Safety
///
/// - `ptr` *must* have been returned by a call to [`AHeap::allocate_raw`] or
/// [`HeapGuard::alloc_raw`]!
/// - `layout` *must* be the same `Layout` that was provided to the original
/// call to [`AHeap::allocate_raw`] or[`HeapGuard::alloc_raw`]!
pub unsafe fn deallocate_raw(ptr: NonNull<()>, layout: Layout) {
let ptr = ActiveUnsized::from_raw(ptr, layout);
ActiveUnsized::yeet(ptr, layout);
}
/// A guard type that provides mutually exclusive access to the allocator as
/// long as the guard is held.
pub struct HeapGuard {
aheap: &'static AHeap,
}
// Public HeapGuard methods
impl HeapGuard {
fn get_heap(&mut self) -> &mut Heap {
unsafe { &mut *self.aheap.heap.get() }
}
fn clean_allocs(&mut self) {
let mut any = false;
// Then, free all pending memory in order to maximize space available.
let free_list = &self.aheap.freelist;
let heap = self.get_heap();
while let Some(node_ref) = free_list.dequeue() {
// defmt::println!("[ALLOC] FREE: {=usize}", layout.size());
// SAFETY: We have mutually exclusive access to the allocator, and
// the pointer and layout are correctly calculated by the relevant
// FreeBox types.
let layout = unsafe { node_ref.node.as_ref().node_layout };
let ptr = node_ref.node.cast::<u8>();
unsafe {
heap.deallocate(ptr, layout);
any = true;
}
}
if any {
self.aheap.any_frees.store(true, Ordering::Relaxed);
}
}
/// Attempt to allocate a HeapBox using the allocator
///
/// If space was available, the allocation will be returned. If not, an
/// error will be returned
pub fn alloc_box<T>(&mut self, data: T) -> Result<HeapBox<T>, T> {
// Clean up any pending allocs
self.clean_allocs();
// Then, attempt to allocate the requested T.
let nnu8 = match self.get_heap().allocate_first_fit(Layout::new::<Node<T>>()) {
Ok(t) => t,
Err(_) => return Err(data),
};
let nn = nnu8.cast::<Active<T>>();
// And initialize it with the contents given to us
unsafe {
Active::<T>::write_heap(nn, self.aheap);
Active::<T>::data(nn).as_ptr().write(data);
}
Ok(HeapBox {
ptr: nn,
pd: PhantomData,
})
}
/// Attempt to allocate a HeapArc using the allocator
///
/// If space was available, the allocation will be returned. If not, an
/// error will be returned
pub fn alloc_arc<T>(&mut self, data: T) -> Result<HeapArc<T>, T> {
// Clean up any pending allocs
self.clean_allocs();
// Then, attempt to allocate the requested T.
let nnu8 = match self
.get_heap()
.allocate_first_fit(Layout::new::<Node<ArcInner<T>>>())
{
Ok(t) => t,
Err(_) => return Err(data),
};
let nn = nnu8.cast::<Active<ArcInner<T>>>();
// And initialize it with the contents given to us
unsafe {
Active::<ArcInner<T>>::write_heap(nn, self.aheap);
Active::<ArcInner<T>>::data(nn).as_ptr().write(ArcInner {
data,
refcnt: AtomicUsize::new(1),
});
}
Ok(HeapArc {
ptr: nn,
pd: PhantomData,
})
}
pub fn alloc_box_array_with<T, F>(&mut self, f: F, count: usize) -> Result<HeapArray<T>, ()>
where
F: Fn() -> T,
{
// Clean up any pending allocs
self.clean_allocs();
// Then figure out the layout of the requested array. This call fails
// if the total size exceeds ISIZE_MAX, which is exceedingly unlikely
// (unless the caller calculated something wrong)
let layout = unsafe { ActiveArr::<T>::layout_for_arr(count) };
// Then, attempt to allocate the requested T.
let nnu8 = self.get_heap().allocate_first_fit(layout)?;
let aa_ptr = nnu8.cast::<ActiveArr<T>>();
// And initialize it with the contents given to us
unsafe {
ActiveArr::<T>::write_heap(aa_ptr, self.aheap);
ActiveArr::<T>::write_capacity(aa_ptr, count);
let (start, count) = ActiveArr::<T>::data(aa_ptr);
let start = start.as_ptr();
for i in 0..count {
start.add(i).write((f)());
}
}
Ok(HeapArray {
ptr: aa_ptr,
pd: PhantomData,
})
}
pub fn alloc_fixed_vec<T>(&mut self, capacity: usize) -> Result<HeapFixedVec<T>, ()> {
// Clean up any pending allocs
self.clean_allocs();
// Then figure out the layout of the requested array. This call fails
// if the total size exceeds ISIZE_MAX, which is exceedingly unlikely
// (unless the caller calculated something wrong)
let layout = unsafe { ActiveArr::<MaybeUninit<T>>::layout_for_arr(capacity) };
// Then, attempt to allocate the requested T.
let nnu8 = self.get_heap().allocate_first_fit(layout)?;
let aa_ptr = nnu8.cast::<ActiveArr<MaybeUninit<T>>>();
// And initialize it with the contents given to us
unsafe {
ActiveArr::<MaybeUninit<T>>::write_heap(aa_ptr, self.aheap);
ActiveArr::<MaybeUninit<T>>::write_capacity(aa_ptr, capacity);
let (start, count) = ActiveArr::<MaybeUninit<T>>::data(aa_ptr);
let start = start.as_ptr();
for i in 0..count {
start.add(i).write(MaybeUninit::uninit());
}
}
Ok(HeapFixedVec {
ptr: aa_ptr,
pd: PhantomData,
len: 0,
})
}
pub fn alloc_raw(&mut self, layout: Layout) -> Result<NonNull<()>, ()> {
// Clean up any pending allocs
self.clean_allocs();
// calculate the layout of the requested allocation
let (layout, offset) = ActiveUnsized::layout(layout);
// Then, attempt to allocate the requested T.
let nnu8 = self.get_heap().allocate_first_fit(layout)?;
let ptr = nnu8.cast::<ActiveUnsized>();
unsafe {
ActiveUnsized::write_heap(ptr, self.aheap);
let data_ptr = ptr.as_ptr().cast::<u8>().add(offset).cast::<()>();
Ok(NonNull::new_unchecked(data_ptr))
}
}
}
impl Drop for HeapGuard {
fn drop(&mut self) {
self.aheap.state.store(AHeap::INIT_IDLE, Ordering::SeqCst)
}
}