1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318
//! Simulated display driver
//!
//! This is an early attempt at a "frame buffer" style display driver. It uses the
//! embedded-graphics simulator crate to act as a display in simulated environments.
//!
//! This implementation is sort of a work in progress, it isn't really a *great*
//! long-term solution, but rather "okay for now".
//!
//! A framebuffer of pixels is allocated for the entire display on registration.
//! This could be, for example, 400x240 pixels.
//!
//! The driver will then allow for a certain number of "sub frames" to be requested.
//!
//! These sub frames could be for the entire display (400x240), or a portion of it,
//! for example 200x120 pixels.
//!
//! Clients of the driver can draw into the sub-frames that they receive, then send
//! them back to be rendered into the total frame. Any data in the client's sub-frame
//! will replace the current contents of the whole frame buffer.
use std::time::Duration;
use embedded_graphics::{
image::{Image, ImageRaw},
pixelcolor::Gray8,
prelude::*,
};
use embedded_graphics_simulator::{
BinaryColorTheme, OutputSettingsBuilder, SimulatorDisplay, SimulatorEvent, Window,
};
use maitake::sync::Mutex;
use mnemos_alloc::containers::HeapArray;
use mnemos_kernel::{
comms::kchannel::{KChannel, KConsumer},
drivers::emb_display::{EmbDisplayService, FrameChunk, FrameError, Request, Response},
registry::Message,
Kernel,
};
/// Implements the [`EmbDisplayService`] driver using the `embedded-graphics`
/// simulator.
pub struct SimDisplay;
impl SimDisplay {
/// Register the driver instance
///
/// Registration will also start the simulated display, meaning that the display
/// window will appear.
pub async fn register(
kernel: &'static Kernel,
max_frames: usize,
width: u32,
height: u32,
) -> Result<(), FrameError> {
let frames = kernel.heap().allocate_array_with(|| None, max_frames).await;
let (cmd_prod, cmd_cons) = KChannel::new_async(kernel, 1).await.split();
let commander = CommanderTask {
kernel,
cmd: cmd_cons,
display_info: DisplayInfo {
kernel,
frames,
frame_idx: 0,
},
};
kernel.spawn(commander.run(width, height)).await;
kernel
.with_registry(|reg| reg.register_konly::<EmbDisplayService>(&cmd_prod))
.await
.map_err(|_| FrameError::DisplayAlreadyExists)?;
Ok(())
}
}
//////////////////////////////////////////////////////////////////////////////
// CommanderTask - This is the "driver server"
//////////////////////////////////////////////////////////////////////////////
/// This task is spawned by the call to [`SimDisplay::register`]. It is a single
/// async function that will process requests, and periodically redraw the
/// framebuffer.
struct CommanderTask {
kernel: &'static Kernel,
cmd: KConsumer<Message<EmbDisplayService>>,
display_info: DisplayInfo,
}
struct Context {
sdisp: SimulatorDisplay<Gray8>,
window: Window,
dirty: bool,
}
impl CommanderTask {
/// The entrypoint for the driver execution
async fn run(mut self, width: u32, height: u32) {
let output_settings = OutputSettingsBuilder::new()
.theme(BinaryColorTheme::OledBlue)
.build();
// Create a mutex for the embedded graphics simulator objects.
//
// We do this because if we don't call "update" regularly, the window just
// sort of freezes. We also make the update loop check for "quit" events,
// because otherwise the gui window just swallows all the control-c events,
// which means you have to send a sigkill to actually get the simulator to
// fully stop.
//
// The update loop *needs* to drop the egsim items, otherwise they just exist
// in the mutex until the next time a frame is displayed, which right now is
// only whenever line characters actually arrive.
let sdisp = SimulatorDisplay::<Gray8>::new(Size::new(width, height));
let window = Window::new("mnemOS", &output_settings);
let mutex = self
.kernel
.heap()
.allocate_arc(Mutex::new(Some(Context {
sdisp,
window,
dirty: true,
})))
.await;
// Spawn a task that draws the framebuffer at a regular rate of 15Hz.
self.kernel
.spawn({
let mutex = mutex.clone();
async move {
let mut idle_ticks = 0;
loop {
self.kernel
.sleep(Duration::from_micros(1_000_000 / 15))
.await;
let mut guard = mutex.lock().await;
let mut done = false;
if let Some(Context {
sdisp,
window,
dirty,
}) = (&mut *guard).as_mut()
{
// If nothing has been drawn, only update the frame at 1Hz to save
// CPU usage
if *dirty || idle_ticks >= 15 {
idle_ticks = 0;
*dirty = false;
window.update(&sdisp);
} else {
idle_ticks += 1;
}
if window.events().any(|e| e == SimulatorEvent::Quit) {
done = true;
}
} else {
done = true;
}
if done {
let _ = guard.take();
break;
}
}
}
})
.await;
// This loop services incoming client requests.
//
// Generally, don't handle errors when replying to clients, this indicates that they
// sent us a message and "hung up" without waiting for a response.
loop {
let msg = self.cmd.dequeue_async().await.map_err(drop).unwrap();
let Message {
msg: mut req,
reply,
} = msg;
match &mut req.body {
Request::NewFrameChunk {
start_x,
start_y,
width,
height,
} => {
let res = self
.display_info
.new_frame(*start_x, *start_y, *width, *height)
.await
.map(Response::FrameChunkAllocated);
let resp = req.reply_with(res);
let _ = reply.reply_konly(resp).await;
}
Request::Draw(fc) => match self.display_info.remove_frame(fc.frame_id) {
Ok(_) => {
let (x, y) = (fc.start_x, fc.start_y);
let raw_img = frame_display(fc).unwrap();
let image = Image::new(&raw_img, Point::new(x, y));
let mut guard = mutex.lock().await;
if let Some(Context { sdisp, dirty, .. }) = (&mut *guard).as_mut() {
image.draw(sdisp).unwrap();
*dirty = true;
// Drop the guard before we reply so we don't hold it too long.
drop(guard);
let _ = reply
.reply_konly(req.reply_with(Ok(Response::FrameDrawn)))
.await;
} else {
break;
}
}
Err(e) => {
let _ = reply.reply_konly(req.reply_with(Err(e))).await;
}
},
Request::Drop(fc) => {
let _ = match self.display_info.remove_frame(fc.frame_id) {
Ok(_) => {
reply
.reply_konly(req.reply_with(Ok(Response::FrameDropped)))
.await
}
Err(e) => reply.reply_konly(req.reply_with(Err(e))).await,
};
}
}
}
}
}
/// Create and return a Simulator display object from raw pixel data.
///
/// Pixel data is turned into a raw image, and then drawn onto a SimulatorDisplay object
/// This is necessary as a e-g Window only accepts SimulatorDisplay object
/// On a physical display, the raw pixel data can be sent over to the display directly
/// Using the display's device interface
fn frame_display(fc: &mut FrameChunk) -> Result<ImageRaw<Gray8>, ()> {
let raw_image: ImageRaw<Gray8>;
raw_image = ImageRaw::<Gray8>::new(fc.bytes.as_ref(), fc.width);
Ok(raw_image)
}
struct FrameInfo {
frame: u16,
}
struct DisplayInfo {
kernel: &'static Kernel,
frame_idx: u16,
// TODO: HeapFixedVec has like none of the actual vec methods. For now
// use HeapArray with optionals to make it easier to find + pop individual items
frames: HeapArray<Option<FrameInfo>>,
}
impl DisplayInfo {
// Returns a new frame chunk
async fn new_frame(
&mut self,
start_x: i32,
start_y: i32,
width: u32,
height: u32,
) -> Result<FrameChunk, FrameError> {
let found = self.frames.iter_mut().find(|f| f.is_none());
if let Some(slot) = found {
let fidx = self.frame_idx;
self.frame_idx = self.frame_idx.wrapping_add(1);
*slot = Some(FrameInfo { frame: fidx });
let size = (width * height) as usize;
// TODO: So, in the future, we might not want to ACTUALLY allocate here. Instead,
// we might want to allocate ALL potential frame chunks at registration time and
// hand those out, rather than requiring an allocation here.
//
// TODO: We might want to do ANY input checking here:
//
// * Making sure the request is smaller than the actual display
// * Making sure the request exists entirely within the actual display
let bytes = self.kernel.heap().allocate_array_with(|| 0, size).await;
let fc = FrameChunk {
frame_id: fidx,
bytes,
start_x,
start_y,
width,
height,
};
Ok(fc)
} else {
Err(FrameError::NoFrameAvailable)
}
}
fn remove_frame(&mut self, frame_id: u16) -> Result<(), FrameError> {
let found = self
.frames
.iter_mut()
.find(|f| matches!(f, Some(FrameInfo { frame }) if *frame == frame_id));
if let Some(slot) = found {
*slot = None;
Ok(())
} else {
Err(FrameError::NoSuchFrame)
}
}
}